技术文章
VOCs治理过程中碳排放核算方法及减排路径的思考
来源分析及核算方法探讨
1、电力消耗
VOCs废气通过风机进行收集、输送需要消耗电力,风机的风量、风压、风机效率等参数都会影响其电力消耗。近年来,由于VOCs无组织排放控制要求不断加强,企业通过提高风量、风压的方式提高废气收集效率,造成耗电量进一步增加。
2、化石燃料燃烧
采用焚烧法或热力氧化法处理VOCs时,需要在较高的温度下使VOCs与氧气进行反应。当进口VOCs浓度低于2g/m3时,不能进行自持燃烧,需要额外的天然气助燃。
3、VOCs燃烧
采用焚烧法或热力氧化法处理VOCs时,VOCs与氧气反应转化为二氧化碳,该过程相当于化石燃料燃烧,上述处理工艺的处理效率均达到95%以上,说明绝大部分的VOCs转化为二氧化碳,这部分的碳排放量也是不可忽视的。
4、核算方法探讨
(1)现有核算方法
根据北京市《二氧化碳核算和报告要求 其他行业》(DB11/T 1787-2020)的要求,核算边界包括化石燃料燃烧排放、消耗外购电力产生的排放和消耗外购热力产生的排放。以上核算边界,没有考虑VOCs最终燃烧产生的二氧化碳排放量。
以某企业为例,VOCs废气采用“浓缩+RTO”处理工艺,根据统计数据,去除1吨VOCs需要消耗电力3.0万kWh/吨,消耗天然量5400m3/吨,折合二氧化碳排放量为29.8tCO2。该过程中电力消耗产生的二氧化碳排放量占总量的61%,主要是废气经过浓缩预处理后,提高了VOCs浓度、降低了废气总量,节约了后续RTO处理过程的天然气消耗。
(2)拓展核算
目前,VOCs通常以非甲烷总烃(以碳计)表征,去除1吨VOCs(非甲烷总烃,以碳计),燃烧过程产生的二氧化碳量为3.7tCO2,占到处理过程总碳排放量的11%。
由于这部分二氧化碳是VOCs焚烧产生的,其排放量是相对固定的,但由于治理过程的电力、天然气消耗量的差异,这部分碳排放量所占比例不是固定的,该比例数值越高越好。
思考与建议
1、VOCs处理效率提升的边际成本
假设车间内废气是均匀的,收集效率增加通常意味着风量增加。如风机特性曲线所示,若风机不换,风量上升至则风压相应下降;若通过更换电机保持压力不变,风量增加10%,按照风机定律则风机的功率则增加33%,造成电耗增加较多。
风机特性曲线
即使风量和风压的增加能够提升VOCs的收集效率,但是由于车间内VOCs分布的不均匀性,通常会造成VOCs收集浓度的下降,反而增加废气增浓预处理和燃烧过程的能耗。
综合来看,随着废气治理效率的提升,收集过程和处理过程的能耗会相应的增加,且边际成本越来越高。
2、VOCs处理产生的碳排放成本
上述案例计算结果表明,VOCs处理过程的碳排放主要来源于电力消耗和天然气燃烧,去除1吨VOCs产生的碳排放高达33.5tCO2,此外还会产生二氧化硫、氮氧化物等大气污染物。因此,在当前减污降碳协同增效的背景下,仅仅通过末端治理改造削减VOCs的代价是比较高的。
3、VOCs治理低碳化路径
(1)源头削减。采用源头削减的方式减少VOCs的使用和产生有助于降低末端治理的压力,可以采取相对简单的工艺进行治理即可达标。如汽车行业中涂漆、色漆水性化后,喷漆室的废气经过文丘里水洗后即可以达标排放,无须进入RTO处理。
(2)选择低碳处理技术。采取局部密闭、减风增浓、浓缩预处理等技术,在控制风量的前提下提高VOCs的收集效率和废气浓度,降低后续处理过程的能源消耗。如2018年《国家先进污染防治技术目录(大气污染防治领域)》载明的“包装印刷行业节能优化及废气收集处理一体化技术”可以使排风量减少70%以上,VOCs浓度可提高3倍以上,减风增浓后可以直接进入氧化设备净化。
(3)加强设备运行控制。《重污染天气应急减排措施制定技术指南(2020年修订版)》要求A级企业VOCs治理设施“安装DCS或PLC系统,连续测量并记录治理设施控制指标温度、压力(压差)、时间和频率值”,通过收集设备运行参数反馈于优化控制,使治理设施保持在高效运行状态。
来源:环保
标签:   VOCs治理